12345>>
1.

For a sequence (tn) , if  $S_{n}=5(2^{n}-1)$ then tn  = ............


A) $5(2^{n+1})$

B) $\frac{5\times 2^{n}}{4}$

C) $5(2^{n-1})$

D) $\frac{2\times (2^{n-1})}{5}$



2.

Derivative of  $\sin^{-1}\left(\frac{t}{\sqrt{1+t^{2}}}\right)$ with respect to  $\cos^{-1}\left(\frac{1}{\sqrt{1+t^{2}}}\right)$ is 


A) 1

B) cot t

C) tan t

D) 0



3.

In $\triangle ABC$  , with the usual notations , if 

$(\tan \frac{A}{2})(\tan \frac{B}{2})=\frac{3}{4}$   then a+b=.....


A) 4c

B) 2c

C) 7c

D) 3c



4.

Let X be the number of successes in 'n'  independent Bernoulli trials with probability of success p= $\frac{3}{4}$. The least value of 'n'  so that   $P(X\geq1)\geq 0.9375$  is 


A) 2

B) 1

C) 4

D) 3



5.

a and b are non-collinnear vectors .if c= (x-2) a +b and d= (2x+1) a-b are collinear vectors, then the value of x = 


A) $\frac{1}{2}$

B) $\frac{1}{4}$

C) $\frac{1}{5}$

D) $\frac{1}{3}$



12345>>