Answer:
Option A
Explanation:
We have , p= $\frac{3}{4}$ q=1-p = $\frac {1}{4}$
It is given that $P(X\geq1)\geq 0.9375$
= $1-P(X=0)\geq 0.9375$
= $1-^{n}C_{0}(p^{0})(g)^{n-0}\geq 0.9375$
= $1-\left(\frac{1}{4}\right)^{n}\geq 0.9375$
= $1-0.9375\geq\left(\frac{1}{4}\right)^{n}$
=$0.0625\geq\left(\frac{1}{4}\right)^{n}$
= $\frac{625}{10000}\geq\left(\frac{1}{4}\right)^{n}$
=$\frac{1}{16}\geq\left(\frac{1}{4}\right)^{n}$
= ${16}\leq4^{n}$
= n=2