Answer:
Option A
Explanation:
We have , p= \frac{3}{4} q=1-p = \frac {1}{4}
It is given that P(X\geq1)\geq 0.9375
= 1-P(X=0)\geq 0.9375
= 1-^{n}C_{0}(p^{0})(g)^{n-0}\geq 0.9375
= 1-\left(\frac{1}{4}\right)^{n}\geq 0.9375
= 1-0.9375\geq\left(\frac{1}{4}\right)^{n}
=0.0625\geq\left(\frac{1}{4}\right)^{n}
= \frac{625}{10000}\geq\left(\frac{1}{4}\right)^{n}
=\frac{1}{16}\geq\left(\frac{1}{4}\right)^{n}
= {16}\leq4^{n}
= n=2